
Introduction

This document outlines the requirements for our project. We started by deconstructing the
project brief and pulling as much information as we could from what was written there.
While we did this, we also outlined any requirements we felt were contradictory or did not
make sense, and later clarified these in a short interview with our client. After we gained a
good understanding of what the client wanted, we compiled a list of initial requirements.
From these we expanded each of them, and gave more specific details of each requirement.
This sometimes led to the realisation that more requirements needed to be included.

We have split our requirements into system requirements and user requirements. They are
ordered by priority, with the most important at the top of the list (the game must…) and
the least at the bottom (the game should…). Some requirements are split into smaller sub
requirements which outline more detailed specifications of each where appropriate.

Requirements

System Requirements

Functional Requirements

1. The game must feature the player character, which must be a duck.
1.1. The player character will have a ranged attack and a melee attack.
1.2. The ranged attack will use ammunition.

2. The game must be able to save its state and load it at a later point in time, resuming

from where it was saved.
2.1. The game will automatically save after a dungeon (building/level) is

completed.
2.2. The player may manually trigger a save, depending on the difficulty.

3. The game must take place on the University Of York campus.

3.1. The game must contain at least 8 different campus locations that the player
can move through.

4. The game must have a GUI.

4.1. The GUI must show the location of the player within the University.
4.2. The GUI must show the part of the University in which gameplay occurs.
4.3. The GUI must show the amount of points the user has.
4.4. The GUI must show the location of any obstacles.

5. The game must present at least 5 obstacles, which may be physical obstacles or

enemies.
5.1. The game must contain at least one random obstacle.
5.2. The game must contain at least one objective-specific obstacle.
5.3. Enemies will be either melee or ranged.

5.4. If melee enemies touch the player character, the player character will receive
damage based on the type of enemy.

5.5. Ranged enemies may move, and will shoot projectiles at the player character.
5.6. If a player character touches a projectile shot by an enemy, the player

character will receive damage.

6. The game must contain at least 8 different objectives for the player to complete.
6.1. Completion of an objective must score points for the user.
6.2. An objective must be completed by acquiring resources and special powers.
6.3. Objectives may be “quest” objectives or “survival” objectives.

7. The game must have rounds.

7.1. The start of a round must present an objective that a player must complete
to pass the round. The objective may be randomly allocated, or the user may
be permitted to choose from a set of predefined objectives.

7.2. A new round must generate at least one type of random obstacle.
7.3. A new round must generate at least one objective specific obstacle.

8. The player must have several special abilities.

8.1. The player must be able to fly, walk and swim.
8.2. The player must have 3 other abilities which can be obtained during

gameplay.

9. The game must contain resources which the player can collect to assist them in
completing the objectives.

10. The game must end when every area of the university has been conquered, or when

the user’s health and lives are both 0.

11. The game should have different levels of difficulty to account for players of different

abilities.

12. The gameplay should be compartmentalised in such a way that single sections can

be played in 5-10 minute chunks for use in UCAS and open days, but the game can
still be played from start to finish enjoyably.

Non-Functional Requirements

Constraints

13. The game must be able to run on any standard University of York computer.

14. The game must not require any significant financial cost to create.

User Requirements

15. The user must be able to control the player character with a mouse and keyboard.

15.1. The controls must be similar to other top down games, for familiarity

15.2. The numpad shouldn’t be necessary (not all keyboards have them)
15.3. The player

16. The user must be able to pause the game.

16.1. The user must be able to quit from the pause menu.

17. The user must be able to view their inventory.

18. The user must understand what most of the dangers to their character are.

19. The user must understand what the overall objective of the game is.

20. The user must be able to monitor the progress of their current objective(s).

Risks

3. It is possible that the University will not consent to the use of the campus in the game,
although this is unlikely since this is an educational task and the University of York
Communications Office is one of our customers. If this happens we will hold a meeting with
our customer(s) to discuss any possible alternative depictions or locations.

3.1 A risk here is that many locations within the University have a very similar style and
appearance, so it may not appear as though we have 8 different locations. We will have to
choose our locations carefully to keep a good level of variety in the game. This risk can also
be managed with the use of level specific obstacles, scenery and resources.

4.1/ 4.2 Referring to the above, lack of differentiation between locations may make the map
unclear and the user may be unsure of where their duck is. We can minimise this risk with
the above measures, and by making the GUI simple and clear.

4.4 An unclear GUI may mean the user incorrectly perceives some obstacles which may lead
to an unenjoyable or frustrating experience. By making sure our GUI is clear we can
eliminate this risk.

9. The risk here is adhering to the correct level of realism desired by the customer, who
initially stated in the brief that the movements have to be fairly realistic, citing that ‘it would
be ridiculous to think a duck could open doors’, but later talking about the use of special
powers to enhance the ducks ability. We minimised this risk by asking our customer for
clarification and were told that movement does not have to be highly realistic, however
they would like us to consult them about any ideas we have for the game that may impact
the realism of the movement.

20. Making the danger of obstacles obvious to the user might detract from the realism of
the game.

