Implementation Summary

Expansion of the Architecture
Generally speaking, our implementation for the project follows the ideas laid out in the
updated class diagram in the architecture report. Included below is a table, which lists the
classes we have used in our code, the class in the class diagram that our implementation is
representative of (where relevant), and comments about why this choice was made (where

relevant).

Class in
Implementation

Class in
Architecture

Comments

Collidable

Separate class which handles all
collisions in-game i.e. collision detection.

DungeonRoom

Room

The class keeps a track of all of the
entities that are inside the room
(obstacles, enemies etc.).

Enemy

Enemy

The enemy subtypes have been
collapsed into the same class- we have
represented them having an integer
value mapped to the type of attack that
an enemy has.

EntityManager

While this does not represent any
classes in our architecture, this made it
easy for us to manage our sprites in the
game.

GUI

This was also included for ease of use,
by collecting any GUI elements that our
game would use.

Item

Collectible

Represents permanent ability pickups
rather than things like health packs.
Currently does nothing.

Level

Building

Contains the room layout (generated by
the LevelGenerator) and the objective of
the room.

LevelGenerator

The building generation algorithm is
placed in its own class here.

MuscovyGame

Game

The ‘master’ class of the game.

Obstacle

Obstacle

This represents indestructible obstacles.
The class can be used to represent
those that damage the player on contact
and those that do not.

OnScreenDrawable

Wrapper class for sprites.

Pickup Represents small pickups (like health
packs) rather than permanent abilities.
Currently does nothing.

PlayerCharacter Player Handles the character response to the
user input. Also handles animations for
the player sprite, but is not currently
implemented.

Projectile Projectile Represents the player’s and the
enemies’ projectiles. This class allows us
to control the projectile’s damage, range
and speed.

Algorithm Design
With regards to our ‘Level’ and ‘DungeonRoom’ classes, we will need to consider:

a) The data structure of the ‘Level’’DungeonRoom’ that will hold its contents
b) How the entity’s contents will be generated

With the ‘Level’, we will need to store the layout of the rooms that compose the building. A
2D array is the intuitive choice for this, where each location in the array will be either null or
point to an instance of a ‘DungeonRoom’.

When considering the generation algorithm, we decided on certain criteria that we wanted.
The main idea was that we did not want any loops appearing in a 2x2 square. After
considering the problem, we chose to use the following algorithm to generate our rooms:

1) Initialise a 7x7 array and place the starting room in the centre, 3x3.
2) Loop over the array until we have the desired number of rooms.
a) For each non-empty position (meaning a room exists there), randomly decide
whether or not to place a room in each adjacent position (50% chance).
i) We will only place a room if the new room’s position will have 1
adjacent room (i.e. the pre-existing room).
3) Place the boss room, item room and shop room.

To make checking the number of adjacent rooms easier, we implemented a separate
method which when passed a room position, calculated the number of adjacent rooms
(allowing for multiple parts of the code to run the same code easily). The algorithm was first
prototyped in Python in order to verify its feasibility, after which the algorithm was then
implemented in the context of the project. The algorithm can be seen in the
‘LevelGenerator.java’ file.

For our DungeonRoom layout, we have mapped a 18 x 10 grid onto the floor space for the
room. The code will pseudo-randomly generate the room contents by selecting a random
predetermined layout to use, after which any random entities inside the room layout will be
resolved. The reason for implementing the generation of rooms this way was so that was

could ensure that obstacles would never spawn in such a way that a door would be blocked
off completely from access. Furthermore, should someone else wish to create a new room
layout, they can easily do so by adding a new case to the switch/case statement and the 2D
array of the room layout.

