Introduction

Since finishing Assessment 1 we have gone through the requirements and made some
changes. To identify which requirements needed changing/adding/removing we went
through each requirement individually to make sure that it is a requirement rather than
something that would be decided at the design stage. This resulted in some requirements
being removed from the list. However we decided some of these requirements were
legitimate requirements and that we had just put too much detail into and had elaborated
too much on how these requirements would be achieved, therefore we decided to remove
the extra information and keep a changed version of the requirement.

After this process we then went through the requirement list again making sure that it
would be possible to accurately assess whether we have met a certain requirement or
whether we have failed to meet it. This process resulted in several requirements being
reworded and changed slightly to make this possible for all requirements.

Finally after adding, changing and removing requirements we did a last check that none of
the requirements were contradictory or redundant. To make sure we had no
redundant/overlapping requirements we went through each requirement and asking
ourselves whether the requirement seems to be very similar to another. If so we compared
how we would test to assess our completion of each requirement. If the test for both were
the same i.e. if we prove we have met one requirement then we have also completed
another then we could remove one of the requirements from the list. We also looked for
any requirements which were contradictory. This was a similar process to redundant
requirements. However if there were any requirements that when tested would
automatically fail another requirement, then we would have to reword or maybe take
out/replace that requirement.

Changes Summary (Changes also underlined)

Requirement 1.2 (“Ranged attack uses ammunition”) has been removed because it describes a
design element rather than a requirement.

Requirement 2.1 and 2.2 (“The player may manually trigger a save, depending on the difficulty”)
again tries to decide how requirement 2 as a whole will be implemented. Therefore, we have
decided to remove 2.2 and reword 2.1 so that it is more of a requirement than a design decision.
Again we felt that requirement 10 (“The game must end when every area of the university has
been conquered, or when the user’s health and lives are both 0”) was worded in such a way it
sounded like a design decision so we reworded the requirement as above.

We decided that in requirement 12 (“The gameplay should be compartmentalised in such a way
that single sections can be played in 5-10 minute chunks for use in UCAS and open days, but the
game can still be played from start to finish enjoyably”), the final sentence being “but the game
can still be played enjoyably” will be hard to assess so we reworded it as the above. We also
decided that the sentence “for use in UCAS open days” was unnecessary as again it was
justification for the requirement.

On doing the final run through we decided that the last part of requirement 11 was not necessary
and so we removed it.

15.1 (“The controls must be similar to other top down games, for familiarity.”) again seemed more
like a design decision rather than a requirement because the requirement just states that the user
will use a mouse and keyboard and again this sub-objective is saying how we would implement
that therefore we removed it.

For requirement 18 (“The user must understand what most of the dangers to their character are.”)
The phrase “understand most of the dangers” seemed vague and hence difficult to assess whether
we have achieved the goal, therefore we reworded it to the above requirement.

Requirements

System Requirements

Functional Requirements

1.

The game must feature the player character, which must be a duck.
1.1. The player character will have a ranged attack and a melee attack.

The game must be able to save its state and load it at a later point in time, resuming
from where it was saved.
2.1. The game will save after every level.

The game must take place on the University Of York campus.
3.1. The game must contain at least 8 different campus locations that the player
can move through.

The game must have a GUI.

4.1. The GUI must show the location of the player within the University.

4.2. The GUI must show the part of the University in which gameplay occurs.
4.3. The GUI must show the amount of points the user has.

4.4. The GUI must show the location of any obstacles.

The game must present at least 5 obstacles, which may be physical obstacles or

enemies.

5.1. The game must contain at least one random obstacle.

5.2. The game must contain at least one objective-specific obstacle.

5.3. Enemies will be either melee or ranged.

5.4. If melee enemies touch the player character, the player character will receive
damage based on the type of enemy.

5.5. Ranged enemies may move, and will shoot projectiles at the player character.

5.6. If a player character touches a projectile shot by an enemy, the player
character will receive damage.

The game must contain at least 8 different objectives for the player to complete.
6.1. Completion of an objective must score points for the user.

6.2. An objective must be completed by acquiring resources and special powers.
6.3. Objectives may be “quest” objectives or “survival” objectives.

The game must have rounds.

7.1. The start of a round must present an objective that a player must complete
to pass the round. The objective may be randomly allocated, or the user may
be permitted to choose from a set of predefined objectives.

7.2. A new round must generate at least one type of random obstacle.

7.3. A new round must generate at least one objective specific obstacle.

The player must have several special abilities.

8.1. The player must be able to fly, walk and swim.
8.2. The player must have 3 other abilities which can be obtained during

gameplay.

9. The game must contain resources which the player can collect to assist them in
completing the objectives.

10. The game must end when every area of the university has been conquered or the
player has run out of health.

11. The game should have different levels of difficulty.

12. The gameplay should be compartmentalised in such a way that single sections can
be played in 5-10 minute chunks

Non-Functional Requirements

Constraints

13. The game must be able to run on any standard University of York computer.
14. The game must not require any significant financial cost to create.

User Requirements

15. The user must be able to control the player character with a mouse and keyboard.
15.1. The numpad should not be necessary (not all keyboards have them).

16. The user must be able to pause the game.
16.1. The user must be able to quit from the pause menu.

17. The user must be able to view their inventory.
18. The game must make all dangers visible.
19. The user must understand what the overall objective of the game is.

20. The user must be able to monitor the progress of their current objective(s).

Risks

3. Itis possible that the University will not consent to the use of the campus in the game,
although this is unlikely since this is an educational task and the University of York
Communications Office is one of our customers. If this happens we will hold a meeting with
our customer(s) to discuss any possible alternative depictions or locations.

3.1 A risk here is that many locations within the University have a very similar style and
appearance, so it may not appear as though we have 8 different locations. We will have to
choose our locations carefully to keep a good level of variety in the game. This risk can also
be managed with the use of level specific obstacles, scenery and resources.

4.1/ 4.2 Referring to the above, lack of differentiation between locations may make the map
unclear and the user may be unsure of where their duck is. We can minimise this risk with
the above measures, and by making the GUI simple and clear.

4.4 An unclear GUI may mean the user incorrectly perceives some obstacles which may lead
to an unenjoyable or frustrating experience. By making sure our GUI is clear we can
eliminate this risk.

9. The risk here is adhering to the correct level of realism desired by the customer, who
initially stated in the brief that the movements have to be fairly realistic, citing that ‘it would
be ridiculous to think a duck could open doors’, but later talking about the use of special
powers to enhance the ducks ability. We minimised this risk by asking our customer for
clarification and were told that movement does not have to be highly realistic, however
they would like us to consult them about any ideas we have for the game that may impact
the realism of the movement.

20. Making the danger of obstacles obvious to the user might detract from the realism of
the game.

