Testing Methods

The game is only partly finished for this assessment. Due to this, static tests such as
walkthroughs are not possible so the testing of our game will consist of mostly dynamic
testing. For functional testing, mostly black and grey box testing was used (as there is not
much quantifiable interaction between classes which could be tested using assert functions),
with the intention of some white box automated testing using JUnit for exhaustive testing of
certain units of code (such as level generation), and black box for GUI and non-functional
(eg usability) testing. Our tests were mostly integration tests as most of the game relies on
the pulling together of many classes and functions, with some system testing to ensure the
top level control systems are working. There was no regression or acceptance testing since
the game is unfinished and has not had large changes to the code since testing, these will
be more applicable to assessments 3 and 4.

Testing Report

Code/Methods Test Description/Procedure Result Action Taken
and classes Number
being tested
Enemy_AttackT | 0.1/1.1/1.2 | This is testing how an Passed Changed the data
ype enemy damages a everything other | type in
player depending on than when the CurrentHealth and
what attackType they player takes projectile.damage
have. Some damage 99.9(subsection | to double.
the player when 9) damage
colliding with them when there is a
some do damage with rounding error.
projectiles and some do
both.
Enemy_Moveme | 0.1/1.1/1.2/ | This is to test the Each test No action required
ntType 1.3/2.1/ movement for the passed all as all tests were
different types of different kinds of | passed.
enemies. Some don't data that it
move at all, some move | might need to
randomly and some handle
follow the player in a
certain radius.
Enemy_ShotTyp | 0.1/1.1/ This is to test the Each test No action required
e 2.1.1/ enemies different passed all as all tests were
3.1/ shotType i.e. their different kinds of | passed.
4.1 projectile attributes, data that it

some enemies shoot a
single projectile towards
a player whereas others
shoot double or triple
projectiles towards the

might need to
handle

player.

PlayerCharacter | 0.1/1.1/ This is to test that the Each test No action required
_ShotType 2.1 player projectiles are passed all as all tests were
working as they should | different kinds of | passed.
be testing that when data that it
when the player might need to
shotType = 0 it fires a handle
single projectile, when it
equals 1 it fires a
double projectile and
when set to 2 a treble
projectile
PlayerCharacter | 0.1 This tests that when the | The fire rate No action required
_Attackinterval Attackinterval number is | increased until as all tests were
lowered that the fire the number got | passed.
rate of projectiles is below zero in
increased. which case it
behaves as if
the number is
zero as
intended.
Therefore
passed all tests.
PlayerCharacter | 0.1 Testing that altering the | All tests were No action required
_ProjectileVeloci value in passed as all tests were
ty ProjectileVelocity passed.
changes the velocity of
the projectile fired by
the player
PlayerCharacter | 0.1 Testing that changing All tests were No action required
_ProjectileRang the projectileRange passed as all tests were
e value changes the passed.
range of the projectile
fired by the player
Obstacle_Dama | 1.1 Tests that when the Passed Changed the data
ge player walks into a everything other | type in
dangerous object, the than when the CurrentHealth and
correct amount of player takes projectile.damage
health is taken from the | 99.9(subsection | to double.
player 9) damage
when there is a
rounding error.
Level_Gen 0.111 Checks that there are All tests are No action required

no rooms with zero
doors to get out and

passed however
the boss room is

as all tests were
passed.

also checks the right
number of specialised
rooms are spawned in.

more likely to
spawn in the top
left of the rooms
because of the
algorithm. It is
however
spawned in fine

Quit_Game

0.1

Tests that pressing “P”
once pauses the game,
and again unpauses it.

This test failed
because the
only way you
can quit the
game currently
is to press the
“X” in the top
right corner

This feature can be
implemented by the
team that takes on
our code base

With regards to the completeness of our testing, with the time frame for this assessment
being so short and with the Christmas break in the middle of it we managed to complete
most of our testing but did not manage to test some things such as player velocity or
invincibility frames. We were only able to superficially test room generation, collision
detection and scoring by playing the game ourselves and none of this is logged although the
appropriate test cases are in the test materials. This is not a problem since the game is not
yet complete and the team that takes over from us has more than enough framework to do
the test themselves once they have made any changes that they wish to. It can also be seen
from the traceability matrix that our tests did not cover all of our requirements. This is
because not every requirement has yet been implemented, and the ones which are
implemented, but not tested, are incomplete.

URL for Testing Material

For full test plan, results, test artifacts and bug report please see:
https://teammuscovy.wordpress.com/big-duck-on-campus/testing-plan-results/(location)

https://teammuscovy.wordpress.com/big-duck-on-campus/testing-plan-results/

