Change report

Approaches

Our team’s initial approach to change within the project was to keep our changed documentation and
code separate from the original. We did this by forking their code on github to our own team
directory, and by retaining team Muscovy’s documentation and making any changes in separately
saved documents. A reason that we did this was to allow better tracing of changes; it was clear and
easy to see where changes were made when it was possible to compare side-by-side with the original.
Github was very useful in helping us to retain the original code, along with previous code before
commits were made. This also allowed for a fall-back working implementation in case any changes
introduced new bugs, or files became lost/corrupted, etc.

This was also useful when assessing how well our changes helped us to fulfil the requirements
specification. The increased focus on traceability helped us to follow how our changes related to the
completion of the requirements. Therefore, it let us see how our further implementation directly lead
to completely fulfilling team Muscovy’s requirements. This allowed us to clearly show justification for
our decisions with regards to change in the code, as we could easily refer it back to what had not yet
been implemented from the requirements specification.

Our team’s approach to actual implementation of changes used the ‘change-request’ format,
with minor changes. By ‘change-request’ format, | am referring to the handling of change whereby
personnel involved with the program may request (propose) changes [1]. In a larger-scale, typical
industry project, there are more personnel which may propose changes - for example, users,
designers, system analysts, and so on [1]. The requested change is then evaluated by a Change
Control Board - in this case, our team as a whole - based on cost, and benefit to the project. Following
this, it is either accepted or rejected, and given a priority [1]. The process is shown in diagram form in
Fig 3 [1]. As a smaller-scale project, we handled change proposal itself slightly differently - we didn’t
feel the need for a change proposal form, or similar, due to the tight nature of our team. Instead,
initially, changes were proposed through the ‘Issues’ functionality in github. These were organised by
urgency, with requirement fulfilling being the most urgent, followed by bug-fixing, and enhancement
(perfective) changes being the least urgent. This provided a list of proposed changes which we could
easily review as a team in order of importance - shown in Fig 2. To better illustrate the changes
needed, during review, changes such as ‘needs more objectives’ were also refined into concrete goals
and tasks .

We knew that our changes would cover the range of perfective, corrective, additive and
deletive changes. Therefore, we devised slightly different protocols for each type of change, due to
the perceived difference in impact and risk associated with each one. The process associated with the
changes we made was also often based on the estimated severity of the change in question. To
elaborate, corrective changes which were thought to be very minor — e.g., changing misleading
variable names, or fixing typos/misspellings in documentation — were left to the discretion of the
team member carrying them out. Corrective changes as a whole were less scrutinised than other
types of changes. As long as the aspect of the software/documentation was agreed to be a fault by
the team, the corrective changes were carried out as needed.

Perfective, additive and deletive changes were agreed upon by the team beforehand.
Perfective and deletive were given less priority than additive changes; this was due to the fact that
additive changes were more likely to directly fulfil an aspect of the requirements, whereas perfective
changes often only optimised content which was already implemented. We did not expect to have
many deletive changes and did not plan extensively for them; our goal in assessment 3 is to build on
the code and documentation which we received from team Muscovy. As their implementation has
been the basis/core functionality of the game, there would not be many necessary deletive changes.
In the documentation, however, they were occasionally necessary — for example, when editing
documentation which had explicitly referred to previous team members by name. These were
handled individually.

Implemented Changes Report

This report is organised into sections where changes to software are iteratively covered, followed
by any documentation changes resulting from the changes to the code. Changes are organised
into additive, deletive, perfective and corrective sections.

Direct download links to documentation are referenced throughout the document. However, the
pages where the documentation is collected are as follows:

Swapped files from previous team

http://teal-duck.github.io/teal-duck/swapfiles2.html

Our Assessment 3 documentation

http://teal-duck.github.io/teal-duck/a3files.html

Additive

Software change

In the projectile class, a ‘shootProjectiles()’ static function was added. This was a function which
handled projectile shooting and also provided functionality for bullet spread in the case of
multiple bullets (e.g. for bosses, or when the player acquires the triple shot power-up). This
avoided duplication of logic as it could be used by both the player and enemies/bosses. This made
fulfilling requirements 5.2, 6 and 8.1
(https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p
df) more efficient with regards to how much code was needed; handling any number of bullets
firing in one function allowed us to easily implement power-ups, and unique (objective- or
round-specific) bosses.

Subsequent documentation change(s)

References to the previously planned function intended to handle projectile firing, ‘OnHit()’, was
removed from the new architecture document.

Software change

Resource pickups were implemented to fulfil requirements 8.2 and 9
(https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p
df). These resources had to be, as specified in the requirements, useful to help the player to finish
the game. Therefore we added health pickups as well as power-ups which increased the power of
the player’s weapon; bombs were also implemented as a power-up, but the bomb resource
worked the same as health in that the player could only have a limited number of bombs, which
could be increased by picking up a bomb item. This required the addition of an ‘ItemType’ class
containing the ItemType enum and texture locations. Additionally, item handling logic was added
to the class EntityManager.

Subsequent documentation change(s)

The class for handling resources had already been shown in the previous team’s architecture as
‘Collectible’; however, theirs inherited from the scrapped class ‘Destructible’, which was a subclass
of ‘Obstacle’. This is not how we implemented resources and pickups; we implemented an ltem
class which is a subclass of Collidable. Instances of this class as they appear in the game have an
associated ItemType enum which decides which logic is carried out with regards to the item. This
information is shown on the new class diagram in the modified architecture report at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf and in
the appendix of this report.

Software change

A class MoveableEntity was implemented to share moving logic between the player and enemy
entities, by collecting accessors like getVelocityX, getVelocityY, getFriction, and mutators
setVelocity, setAccelerationSpeed, and so on. This made it exceedingly simple to implement the
controllable player, as detailed in user requirement 15, and fulfil functional requirement 5.5
(https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p

http://teal-duck.github.io/teal-duck/swapfiles2.html
http://teal-duck.github.io/teal-duck/a3files.html
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf

df), which states that ranged enemies may move, and may not; this is done by varying the velocity
parameter. The fact that the logic is shared increases efficiency with respect to code size, and
follows the general principle of reusing code where possible.

Subsequent documentation change(s)

The class MoveableEntity and its inheritance relationships are shown on the updated class
diagram. This class extends Collidable, as shown on the diagram in the appendix of
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf and of
this report. It allows the player, enemies and bombs to share the same movement logic, as they all
inherit from the MoveableEntity class.

Software change

The flight and swimming inherent abilities were added to fulfil requirement 8.1. Flight was
implemented by allowing the player to increase their speed for a limited length of time at a time;
we did this by adding flight speed multiplier and max flight time variables to the PlayerCharacter
class. Swimming was also implemented through a flooded level (Goodricke) where the player’s
friction is increased.

Subsequent documentation change(s)

This added functionality was implemented through parameter changes to classes and so didn’t
require representation in the documentation.

Software change

A full suite of acquired player abilities were added to the game to fulfil requirement 8.2. The
player now acquires a new power-up upon completion of each level. Power-ups appear as pickups,
and upon collection by the player, they alter the associated enum(s) PlayerShotType and
ProjectileType, or attributes associated with the PlayerCharacter class such as maxHealth. This
allows us to vary the player ability as they progress through the game. The abilities we added are:
Triple-shot, Rapid fire, Flamethrower, Flight, Bombs, Extra Health and Sunglasses.

Subsequent documentation change(s)

Representation of the enums used to implement some of these abilities was added to the new
class diagram found at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf.
Compare with the previous team'’s architecture at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.
pdf, where special abilities were unclearly labelled as an ‘Ability’ class inheriting from ‘Collectible’.
In our representation, ability pick-ups are instances of the ‘Item’ class but, as previously discussed,
are handled using enums and attribute changes.

Software change

Implementing saving and loading functionalities. Requirement 2 and 2.1
(https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p
df) state that the game should be saveable and loadable from the current state, and that it should
save after each level completion. This was not implemented to any level when we inherited the
code; upon completion of the game, we have fully implemented it as specified in the
requirements.

Subsequent documentation change(s)

By inheriting from the abstract class BaseSerializer and using the interface provided by JSON, we
added multiple classes to serialize levels, each level individually, dungeon rooms, enemies, items,
obstacles, the player data and save data respectively. These were then saved using a SaveGame
class inheriting from the Saver superclass. This then calls the class SaveHandler when saving a
game state. This information and more explanation is shown in our modified architecture
document at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf. This is
changed from our inherited architecture as no saving functionality was implemented or
represented when we received the project:

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.
pdf.

Software change

Requirement 5.2 states
(https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p
df) that the game must contain at least one objective-specific obstacle. We fulfilled this
requirement by providing unique bosses for the Constantine, Law and Management and
Goodricke levels. This was done by varying parameters passed to the BossParameters class in
these different levels: projectile type, projectile speed, touch damage and health, among others,
were altered to produce more difficult bosses in later levels.

Subsequent documentation change(s)

This change was technical rather than architectural and so did not require documentation
changes.

Corrective

Software change

Many sets of variables were changed to be implemented as enums. This change was in order to
allow us to fulfil functional requirements (found at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.p
df) 5, 6 and 8. To elaborate, enums provided us with an easy way to implement the functionality of
different objectives and different acquired abilities for the player. Our ‘needs more objectives’,
‘needs more obstacles’ and ‘needs duck special powers’ change requests (github issues) were met
here. Requirement 8 specified that the player should have special abilities, and 8.1 specified that
several of the abilities should be acquired throughout the game. By varying the enum
PlayerShotType, we could implement ability power-ups which changed the user projectiles; for
example, triple shot, rapid fire and flamethrower. Similarly, we could vary enums EnemyShotType
to give enemies/bosses more projectiles to fire at a time, or make them homing - helping to satisfy
functional requirement 11 (the game should have different levels of difficulty). We chose to use
enums because they lock the range of possible values into the universe given by the enum, so are
a secure method of varying entity parameters.

Subsequent documentation change(s)

Representation of our added enums with some example values were added to the class diagram in
our modified architecture diagram, found at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf.
Explanation of all enums used were added to the textual architecture report. Compare with the
inherited architecture document at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.
pdf. The new class diagrams are also given as Fig 1.1 - 1.4 in the appendix of this report.

Software change

In the previous team’s code, for every entity instance, the texture for that entity was reloaded
from file every time it was used. This included bullets, of which there can be a large amount on the
screen at a time. This method of loading textures was inefficient, adversely affected the framerate
and wasted memory. The file operations were too slow to realistically use in this manner. To
rectify this problem, a class TextureMap was created. All texture loading is now done through this
class, which also allows disposal and overwrites of textures, so is more memory-efficient. Textures
are now only loaded the first time they are requested, otherwise the already-loaded texture is
returned. Additionally, all textures are disposed when the game is closed, to make sure there is no
garbage left over in memory.

Subsequent documentation change(s)

This change was technical rather than architectural and so did not require documentation
changes.

Software change

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/arch2.pdf

The enum gameState, previously held in the MuscovyGame class, was removed and replaced with
libGDX screens. The enum was designed to specify the state of the game, which would then decide
which screen to display throughout gameplay; screens were rendered and displayed in a single
class depending on the value of the enum. Whilst being confusing, this was also bad practice as it
failed to separate the screen classes sufficiently, and infringed on the class MuscovyGame by
requiring logic and rendering to be done within it. To rectify this a class was created for each
screen; the game state is implied by which screen the player is on, and the relevant screen and
textures are rendered by the relevant class.

Subsequent documentation change(s)

These screen classes implement the interface Screen from libGDX and inherit from the abstract
class ScreenBase, which holds the instance of MuscovyGame. This is shown in the new class
diagram at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf, and
shown in the appendix of this document. This change allowed us to meet requirements 4-4.4 of
providing the user GUI, while avoiding cumbersomely rendering every screen in one class.
Perfective

Software change

The most initial changes we carried out on the code we inherited immediately were some general
housekeeping and code-quality changes. These did not change the meaning or structure of the
code but made it more consistent and/or readable. These changes were: removing unused
variables, renaming variables to a consistent style (lowerCamelCase) and cleaning up magic
numbers (giving expressive names to numbers used where the purpose and where the numbers
came from was not clear).

Subsequent documentation change(s)

These changes were minor quality-of-life changes which did not affect the requirements or
architecture, etc., and so didn’t require changes to the inherited documentation.

Software change

The way in which boss rooms are generated in ‘kill the boss’ levels was changed to make it more
random. This is because the previous method began from the bottom left room of the map, and
picked the first room it found with only one neighbouring room. This method made it less likely
that the room in which the boss would be allocated would be varied significantly in each round.
Therefore the player may have found it too easy to locate the boss room after figuring out the
pattern. Our new method builds a list of all rooms with only one neighbour, and randomly picks a
boss room from the list.

Subsequent documentation change(s)

This change was technical rather than architectural and so did not require documentation
changes.

Software change

Room templates are now loaded from a CSV file, using the newly implemented class
DungeonRoomTemplateLoader. This made the code smaller, neater and more readable, as there
were not large two-dimensional arrays taking up space in the room generator.

Subsequent documentation change(s)

This change was technical rather than architectural and so did not require documentation
changes.

Deletive

We did not carry out any deletive changes, as the game was unfinished when we inherited it and
we finished it by fulfilling the remaining requirements; therefore none of the inherited codebase
became unneeded or outdated throughout our further implementation.

Other Documentation Changes

Some of our documentation changes were not made as a result of further implementation.

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf

Any reference to money as a resource was removed from the architecture document and
class diagram. Our interpretation of requirement 9 (“The game must contain resources
which the player can collect to assist them in completing the objectives.”) did not
include money, but health and bomb pickups; changes can be seen at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arc
h3.pdf

The requirement for a player melee attack was removed - changes and explanation can be
seen at

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/req3.pdf
Bibliography

[1] Enzhao Hu; Yang Liu, "IT Project Change Management," in Computer Science and
Computational Technology, 2008. ISCSCT '08. International Symposium on , vol.1, no., pp.417-420,
20-22 Dec. 2008

Appendix

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/arch3.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%203%20files/req3.pdf

Class diagram {’

See Fig 1.4 for Level
associations and enums

See Fig 1.3 for screen
associations

See Fig 1.2 for saver AN
associations

#java class»

wjava class»

Fig 1.1. Updated Class Diagram

«java classw wjava classe Saver Explosion
Levels MuscovyGame #game:Mus covyGame A
-maxlevels 1 [-1eve1s #)son:json o
1 +saveToFile(data, fileHandle) +update (deltaTime)
setlevels(levels) create() el
getlawels() resetGame() 1
1 wjava classs wjava classe
wenums 1 1 EntityManager «java class» Projectile
PlayerShotType wjava class» e OnScreenbrawable -speed
+SINGLE PlayerCharacter -level -texturelame k— -
+DOUBLE ?_______“‘———— +max5peed v————-'-_l_' . +setd{x)
+TRIFLE ae 1 setCurrentDungeonRoom{) getTextureName() +set¥(y)
=e1flpdate() moveToUpRoom() 2D
HE UM -)
Action 1
+WALK_UP 1
+WALK_RIGHT 1..2 wjava class® wjava class»
eEnumn wjava class» Collidable Bomb
1 RoomType DungeonRoom -circleHitBox -blastRadius
S mum - e
- : NORMAL -obstaclelist il
A EEEErRa BOSS 1 setUpBoxes() getBlastTime ()
+STANDARD initialisedlalls() ... () =2l
+HOMING .
1 1
1
sSEenunet @ .
ProjectileDamager a..* 8..1 . I«ja\fa e i /

- : wjava class»
+PLAYER «java classs wjava class» =
+ENEMY T Enemy Item ?bStaﬂ‘-‘ Moveabl‘?Emf:.ty
+BOTH 1 +touchDamage —type :t?iamagmg. boolean +worldFriction

. e . D .
selflUpdate() getType() is E(")naglng(J update()
wenum 1 .0 0 .aaf)
AttackType fr
+TOUCH
+RANGE
1
1 1 WwEnUm
wenum: WEnum ItemType
EnemyShotType MovementType HEALTH
+SINGLE_TOWARDS_PLAYER +STATIC BOMB
+DOUBLE_TOWARDS_PLAYER +RANDOM TRIPLE_SHOT
cac +FOLLOW e

Class diagram /

See Fig 1.1 EL

i

Saver

wjava classn
SaveGame

T

MuscovyGame

1

1

ujava class»
ItemSerializer

EnemySerializer

wjava class»

Pa

«java class»
BazeSerializer

intialiseSerializers()

#game

\

Fig 1.2

«java class»
saveDataSerializer

A

wjava classw»

ObstacleSerializer

ujava class»
LevelsSerializer

wjava classw»

DungeonRoomSerializer

wjava class»
Lewvel Serializer

wjava classw»

PlayerCharacterserializer

Class diagram {

See Fig 1.1 tl

kjava class»
WinScreen

MuscovyGame
1
1
w#java classn
- ScreenBase
kjava class»
GameScreen | pyTEAMS —
+renderScreen(deltaTime, batch)
<o)
/ iy \
wjava class»
GameQverscreen
wjava class» wjava class» wjava classn»
LevelSelectScreen LoadGameScreen LoadingScreen

Fig 1.3

wjava class»
MainMenuScreen

Class diagram /

Fig 1.4

See Fig 1.1 El

Levels

1.:.*%

#java classs
Level

+visitedRooms

arefAllEnemiesDead()

mn=ti

1 1
HETIUM HENUM?
LevelType ObjectiveType
COMSTANTINE BOSS
LANGWITH FIND ITEM
GOODRICKE KILL_EMNEMIES

() 13 Open + 0 Closed Author = Labels Milestones

() Explanation of controls enhancement
#13 opened 15 days ago by aacn500

| () Save games enhancement

#12 opened 15 days ago by aacn500

(0 Ul enhancement
#11 opened 15 days ago by aacn500

() Sounds enhancement

#10 opened 15 days ago by aacn500

(D Prettify assets enhancement
#0 opened 15 days ago by aacn500

(1) Sprites don't match hitboxes enhancement
#5 opened 15 days ago by aacn500

_ (D Need 'duck special powers'

#7 opened 15 days ago by aacn500

() Need more cbstacles [T T
#6 opened 15 days ago by aacn500

(1) Need more objectives [l

#5 opened 15 days ago by aacn500

(D Need more levels [l

#4 openead 15 days ago by aa 0o

(1) Not obvious that black bins damage the player enhancement [Taon

#3 opened 15 days ago by aacn500

(1) Enemies sometimes get stuck in the corner of rooms [T
#2 opened 15 days ago by aacn500

(1) Enemies can kill themselves by colliding with black bins [
#1 opened 15 days ago by aacn500

(ProTip! Type g | p | on any issue or pull request to go back to the pull request listing page

Fig 2. Github Issues Screenshot

Assignee v Sort ~

k]

11

Github Issue _D Change Change 4 B Remove
Proposal Review Acceptance Implementation Tesiing Github Issue

Change
Rejection

Fig 3. Representation of our Change approach. Adapted from information from [1]

