Architecture Report

Changes are shown in blue text.

Class Diagram

Leading on from the abstract architecture for the game presented in Assessment 1’s
architecture report, we have made a number of changes as we progressed with the
development of our game. Specifically, this saw additions to our class diagram, with
attributes and operations added to the majority of classes as we began designing algorithms
and discussing what each class would need to be able to do. This architecture document is
far more in-depth than the document we inherited; this is partly due to the fact that we
implemented the game completely throughout the assessment period and so could faithfully
recreate the architecture in the diagram. While names were somewhat inconsistent
previously, final names for all classes, included attributes and methods have been provided
accurately.

Instead of using https://www.gliffy.com/, we used jsUML2 to create the diagrams to
describe our architecture; this is because this is the tool we used in the previous
assessment and we are more familiar with its use.

Before we discuss the attributes and operations, we should note the changes that have been
made to the structure of the class diagram. The ‘Boss Room’ class, which was previously a
subclass of ‘DungeonRoom’, has been removed. We decided that there was no real need for a
specific class for boss rooms. Because it would still be fundamentally the same as a standard
room, it would have one enemy and a number of obstacles associated with it - similar to a normal
room (which would likely have more than one enemy instead of just a single one). The
functionality for denoting boss rooms was added to our enum ‘RoomType’.

Similarly, the ‘NonDestructible’ subclass of ‘obstacle’ was removed as was not going to add
any additional functionality to the ‘Obstacle’ class. Furthermore, we have removed the
‘Overworld’ class, as a result of design changes moving from a ‘Legend of Zelda’ style
overworld to one similar to the ‘Super Mario Bros.’ series.

Class Breakdown

We did not use the enum gameState which was previously explained here. This enumerable
passed all the responsibility of rendering screens into the MuscovyGame class, enlarging the
class and failing to separate the screens sufficiently. Instead, we implemented separate
classes for each screen; due to the progression of the game, the game state was implied by
what screen was on display. We could still implement requirement 10 (“The game must end
when every area of the university has been conquered, or, when the user dies.”, found at
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req
2.pdf), by adding a WinScreen, to be displayed to the user upon completing the game.

We no longer have the class Building. Instead, we will build the level (i.e. the layout of the
rooms) in the class LevelGenerator. Each room is generated through the DungeonRoom
class, which takes its templates from the DungeonRoomTemplateLoader class. This class
will load the templates from a csv file; therefore, the code will be neater. Using dedicated

https://www.gliffy.com/
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf

classes for these jobs is better practice as it sufficiently separates different tasks, therefore
making it easier to test and to code reliably.

Building on from above, the ‘DungeonRoom’ class now has some attributes to allow the
player to navigate between them. This is in the form of upDoor, rightDoor, downDoor and
leftDoor, which will represent where doors exist in the room (each attribute corresponding
to one of the room walls). We will only draw (and allow players through) doors where we
have specified the location of one when we generated the building. The functionality for
the movement through the levels described here is provided by the EntityManager and
GameScreen classes.

The ‘PlayerCharacter’ class representing the user’s in-game character will require a number
of attributes in order for the game to be able to monitor various things such as health and
what abilities the player has access to. Health will be determined by ‘maxHealth’, holding the
maximum amount of health the player can have, and ‘currentHealth’, representing the
player’s current health (as they will take damage over the course of gameplay). We did not
implement limits on ammo for the player’s ranged attack. To keep track of the player’'s
acquired abilities, we used the enum PlayerShotType and ProjectileType to denote the
modifiers on the player’s projectile attack. The enum ProjectileDamager indicates whether
the projectile instance is damaging to the player or to the enemies. The Action enum lists the
actions the player can take, providing a foundation to base the input logic upon.

We did not implement money as a resource. We interpreted requirement 9
(https://qithub.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/re
g2.pdf) slightly differently; health and bomb pickups were implemented. Health is purely a
resource, while bombs are also an ability the player can acquire; however, they are limited.
Both of these are an instance of class Item; the particular item in question is decided by
enum ltemType.

Player movement now uses the same logic as enemy movement; they both extend the class
MoveableEntity. Variation in speed occurs when the player uses their flight ability (their
speed increases for a limited period of time), and the friction increases when the player plays
the swimming level. Enemies may be static, or they may move randomly or follow the player
— the logic for these system is embedded in MoveableEntity, and the type of movement is
decided by enemy enum ‘MovementType’.

The player character will moved via our movementLogic() function in the PlayerCharacter
class, using the Action enum and logic implemented in the MoveableEntity class.
AbilitySelect() no longer needs to be included in the architecture; abilities collected by the
player will replace their previous special ability. The exception is bombs, which are added to
the player’s abilities when acquired.

The Enemy class, as discussed before, will also extend the MoveableEntity class. The other
attributes of a given instance of an enemy will depend on their enums; ProjectileType and
ProjectileDamager work the same as explained before when used in the PlayerCharacter
class. AttackType shows whether the enemy is a touch-damage or ranged-damage enemy —
therefore eliminating the need for additional ‘Melee’ and ‘Ranged’ classes, which have been
removed from our architecture. EnemyShotType denotes whether the enemy fires one
projectile at a time towards the player, two towards the player, four at a time in all directions,
in random directions, etc.

https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf
https://github.com/teal-duck/teal-duck/raw/gh-pages/Assessment%202%20swap%20files/req2.pdf

Each projectile, represented by the ‘projectile’ class will need to have its own attributes in
order to damage targets properly. Therefore, its speed, damage and range will be
represented by the attributes ‘speed’, ‘damage’ and ‘maxLifeTime’ — the life time denotes
how long the projectile has on the screen before it is destroyed automatically, and
therefore decides its range.

Generally, obstacles (represented by the ‘Obstacle’ class) won’t need many attributes or
functions, as they are static. The ‘damage’ attribute will be used in a similar manner as
melee enemies, and inflict that damage on contact. Objects that don’t damage the player will
simply have a damage of 0. Destructible obstacles are no longer needed.

We refer to what the previous team called ‘collectibles’ as ‘items’. These items can be
picked up by the player on collision. The ltemType enum describes the item as either: a
power-up (triple-shot, flamethrower, etc.), or health or bomb increase. Depending on what the
effect of the item is, the function will use one of the attributes of whichever subclass the item is
of to change the player's stats. For example, if the player picks up a health pack, the function
would use the health pack’s ‘HEALTHPACK_ REGEN’ attribute to increase the player’'s
‘currentHealth’ by its value (of course, remembering to cap the increase to the maxHealth).

Classes representing functionality we would newly implement were also included in the new
architecture. The abstract classes Saver and BaseSerializer are used to implement the saving
and loading. Serializers for all the required game state data inherit from the BaseSerializer class.
Similarly, the abstract class BaseScreen and the different Screen classes which inherit from it
provide the previously discussed screen rendering functionality.

Appendix

Class diagram ’

See Fig 1.4 for Level
associations and enums

See Fig 1.3 for screen ES
associations

See Fig 1.2 for saver
associations

wjava class»

wjava class»
Explosion

-radius

+update(deltaTime)
-0

«java class»

OnScreenDrawable

wjava class»
Projectile

-textureName

1

getTextureName()

-speed

+seti(x)

+set¥(y)
cea ()

wjava classw

wjava class»

Collidable Bomb
-circleHitBox -blastRadius
setUpBoxes() getBlastTime ()
- e

a..*
wjava class» wjava class»
Obstacle MoveableEntity
-damaging:boolean +worldFriction
isDamaging() update()
-0 e

T

wjava class» wjava class» Saver
Levels MuscovyGame #game : MuscovyGame
-maxlevels 1 [-levels #Json:json
1 e +saveToFile(data, fileHandle)
setlevels(levels) create()
getlfe)welSO resetGame() 1
. 0 \ .
1 ujava classw»
wEnUm 1 1 EntityManager
PlayerShotType wjava class» —game
+SINGLE PlayerCharacter ~level
+DOUBLE _1_____—“——————-+max5peed '——-‘-‘__1' -
+TRIPLE P 1 setCurrentDungeonRoom()
selflpdate() moveToUpRoom()
«enum» R ()
Action 1
+WALK_UP t
WALK_RIGHT
J_'_ T 1..2
wenum: ujava class»
1 RoomType DungeonRoom
| renum NORMAL -obstaclelist
ProjectileType BOSS 1
SHELLED e initialiseMWalls()
+HOMING
1 1
1
“enumi
ProjectileDamager a..% 8..1
+PLAYER wjava classe «java class»
+ENEMY — | Encmy Ttem
+80TH 1 +touchDamage -type
selflpdate() getType()
wEnums 1 L0 ()
AttackType
+TOUCH
+RANGE
1
1 1 wenums
HWENUM? “wenum» TtemType
EnemyShotType MovementType HEALTH
+5SINGLE_TOWARDS_PLAYER +STATIC BOMB
+DOUBLE_TOWARDS_PLAYER +RANDOM TRIPLE_SHOT
oas +FOLLOW e

Fig 1.1

Class diagram i

See Fig 1.1 Eﬁ

£

Saver

wjava class»
SaveGame

MuscovyGame

1

1 M

wjava class»
BaseSerializer

intialiseSerializers()

#game

Fig 1.2

wjava class»
SaveDataSerializer

=/

\

wjava class»
LevelsSerializer

wjava class»
Level Serializer

wjava class»
ItemSerializer

wjava class»
EnemySerializer

wjava class»
ObstacleSerializer

ujava class»
DungeonRoomSerializer

wjava class»
PlayerCharacterSerializer

Class diagram /

kijava classw

GameScresn | [NFEE0S

wjava class»
GameQverscreen

wjava class»
LevelSelectScreen

wjava class»
LoadGameScreen

wjava class»
LoadingScreen

Fig1.3

See Fig 1.1
MuscovyGame
1
1
#java classe
ScreenBase -
kejava class»
t—— MWinScreen
+renderScreen(deltaTime, batch)
wjava class»
MainMenuScreen

Class diagram i

Figl1.4

See Fig 1.1 El

Levels

1..*

wjava classws
Level

+yisitedRooms

arefllEnemiesDead()

caalil
1 1
Henums HEnums
LevelType ObjectiveType
CONSTANTIME BO5SS
LANGWITH FIND_ITEM
GDODRICKE KILL_EMEMIES

