Implementation

One key algorithm we implemented was the ability for the user to save and load their game.
This was also in their requirements documents as #2. We chose to go with the JSON format
for our save files because it's a very easy to use and common format, and LibGDX provides
code for serializing objects into and deserializing objects out of JSON. This meant that it was
quite straightforward to write our own implementations of LibGDX'’s Json.Serializer<?>
interface for the objects in the game we wanted to save/load. The game as we inherited it
pregenerated all the levels when the user creates a new game - we kept this mechanic and
wrote our save system around it. This does mean that the save files do end up being quite
large: around 400-500 kilobytes and 16000-17000 lines of JSON when pretty-printed,
however our system handles this with ease.

One requirement that the previous team didn’t implement in assessment 2 was items that
the player can pick up to receive abilities. We used an enum to represent what a specific
item represents, and then defined a function applyToPlayer() akin to the visitor pattern. This
function takes a reference to the player and switches on the item type enum to apply specific
logic for each type. If the effect can be applied, it returns true, else false. This signifies to the
collision system that an item has been “picked up” and so should be removed from the game
world (i.e. an item can only be picked up once). For saving the abilities the player has
collected, we use a set of item types - this gets saved to the JSON as an array, and when
loading, we iterate through the array and for each item type, create a new item with the type
and call applyToPlayer. This has the end result of emulating the player picking up all the
items again in sequence.



We chose to rewrite several elements of our chosen game, in order to help improve the
readability and safety of our code. One of the main methods we employed to achieve this
was the use of Java enums. Previously, they used integers to represent the different states
that various parts of the game could be - these included enemy attack type (touch only,
ranged only or both), enemy shot type (1 bullet in direction of movement, 1 bullet towards
player, 2 bullets towards player etc.), enemy movement type (static, random or follow player)
etc. Some problems with doing it this way include not being clear what 0 vs. 1 vs. 2 etc mean
(they did clear this up in comments, however), and doesn’t provide any way of constraining
values, which could lead to runtime errors (and so requires testing what happens with
erroneous values). This is why we chose to use enums; they give us the compile time safety
of knowing that all potential values are accounted for, and in the case of switch statements,
the compiler tells us if not all cases have been written (and there’s no default case). They
also provide us with named constants so that it’s clear what

EnemyShotType. TRIPLE_TOWARDS_PLAYER, for example, means.

Another change like this that we took a bit further was the “gameState” variable. Again it was
originally an integer to represent main menu screen, level select screen, game over screen
etc. Early in development, we took the same approach of making it an enum for the same
benefits, but when it came to extending the GUI code, it was clear that this wasn’t enough - a
lot of the logic was being performed in switch statements in the main MuscovyGame class.
We changed this to instead use LibGDX screen classes and polymorphism. This allows us to
separate the logic and rendering for the different screens into different files, and their specific
variables can be moved to those files so that the main MuscovyGame class can be
decluttered.

Our architecture around the game’s entities has an intricate level of inheritance. All entities
inherit from the abstract class OnscreenDrawable, which provides a foundation for all
drawable entities. Most classes that are expected to collide with other entities inherit from
abstract class Collidable, which provides several helper methods to perform calculations for
this purpose. We added another abstract class for all entities that move, MoveableEntity, into
which we extracted common methods from PlayerCharacter and Enemy.

One noticeable exception to this hierarchy comes from the Projectile class. This inherits
directly from OnscreenDrawable, a relic from the inherited codebase. Projectile defines its
own collision box, separate from Collidable, as it is not intended to block or be blocked by
other objects; it merely checks if it is in contact with another entity, and disappearing at this
point.

A large amount of this code was entangled with with other parts of the codebase, and
changing it would cause a lot of extra work which we deemed not necessary for this project.
The Item class, which exhibits a similar behaviour to the Projectile class in terms of collision
and does in fact extend from Collidable, is more of an example of how we would have
implemented projectiles if given more time.

We used the classes LevelParameters and BossParameters as a collection of values that
we used to create levels and bosses that shared logic but had somewhat different statistics,



for example bosses in later levels might have more health to make a more challenging
experience for players. These classes provided a concise and logical interface for us to
create, save and load new variants with ease.

Due to time constraints, we were unable to complete some features to our desired level of
completion. These included the save system, objective selection and options control.

While we have implemented a working and robust save system, the system is not in a state
which provides users with our desired level of control. We would have liked to provide the
user with more feedback to which save slot was currently in use, and provided additional
controls such as the ability to overwrite saves. This would share quite a lot of functionality
with the LoadGameScreen - both of these would provide an interface to the user that allows
them to select a save file, however whilst LoadGame gives the options for “load” and
“delete”, overwrite would say “overwrite”. To accomplish this, we could create a base
SaveSelectorScreen class that LoadGameScreen and OverwriteSelectionScreen inherit
from. One more small feature that could be added here is asking the user for confirmation
when deleting/overwriting a save - just prompting them “are you sure?” to prevent accidental
deletion of their work. This would be straightforward to do using the ButtonList class and the
example in LoadGameScreen of using multiple ButtonLists in a single screen.

We would also have liked to provide the user with some form of objective selection at round
start. This would most likely have included presenting the user with a choice between two
possible objectives for them to complete, providing a different reward powerup for a different
choice. The Ul for this would again be easy to make using the ButtonList class, but the
difficulty in this lies in changing the level generation - currently all the levels are
pregenerated when the user creates a new game, and this includes their objective and
creating boss rooms in boss-objective levels (but not in other objectives). With this change,
we could still pregenerate level layouts, just not say that a room is the boss room until the
user chooses to do the boss objective.

Our final missing feature is the settings screen on the main menu. While this exists as an
implemented object, it currently provides no functionality to the user. Our vision of this
screen includes providing the user with the ability to completely rebind the controls used in
the game to keys or controls of their choice. The ControlMap object is already set up to allow
for easy changing of controls, and with the Action enum, we could iterate all possible actions
and present the user with a button to change the binding for each. A lot of this would be
similar to the ButtonList, however that was designed to just support a single list of buttons,
whereas control binding would be more of a grid (actions as the rows and key/controller
binding as columns). Code should still be shared between the two, however, to keep the
consistency between all the user interface elements.



