Testing Methods:

The extent to which we preserved the actual testing suite we inherited was fairly limited due to the
relatively large-scale scope of our changes. As well as many additive changes, much of the structure of the code
was altered by further corrective and perfective changes. Where the logic used on the inputs from the tests
already performed by Team Muscovy was not affected, these tests were not considered necessary to repeat - for
example, we did not alter the collision code which worked well upon inheriting the game. We were able to
preserve the testing suite where the code logic was not changed. Where our code changes had affected the logic
of the systems observed in these tests, or introduced new code which interacted with the already-tested
functionality, we repeated the test. This ensured the previously written logic would continue to work correctly
even after changes to other areas of the code.

With regards to our testing methods, we maintained the dynamic format of testing — with some
changes. We noticed that some of the input testing was done with irrelevant numbers: for example, they
included a test for 0.0000000001 touch damage in their Enemy_AttackType test. This test was based on Java’s
inherent rounding rules, was expected to fail and had no bearing on the overall result of their testing as they
would never have used a number this small as their touch damage value. Therefore the test was not necessary.
We wanted to ensure maximum effectiveness of our testing, while limiting its cost to the lowest possible [1], so
we did not include similar tests in our updated testing suite. Our tests were designed not to be exhaustive —an
unworkable strategy for the time frame and cost — but complete in terms of our universe of system inputs [1].

Due to the unfinished nature of and lack of large-scale changes to the software, testing had not
previously utilised any regression testing. As our code was extensively changed, regression testing was required
throughout. We used it as a safety measure against our changed code possibly adversely affecting functionality
which had already been tested. Our regression testing was performed alongside development; in the cases where
regression testing required tests which we did not formally redo, if the result was the same as in the test
previously carried out it was considered to pass the regression test. This was often left to the discretion of the
team members in the general playtesting throughout development. In all other cases, our regression testing
overlapped with the tests we repeated, and so was thoroughly done.

As previously, we used a mixture of grey box and white box testing to evaluate our software’s
correctness. Grey box testing was carried out by the members of the group whose duties had mostly been
documentation; their knowledge of the code was more basic than others’. Inputs were not changed as
extensively as they were in the previous test suite, for the reasons detailed above; only the necessary changes
were made. These included changes to inputs which would demonstrate that changing a variable resulted in the
correct, expected effect. They were kept within the set of reasonable inputs so as to reduce our testing costs
whilst showing that our system would work correctly when played standardly.

We used the game’s requirements as our first port of call when defining the tests to be done. After
ensuring we would cover all requirements with our range of tests, we refined them using our implementation.
This allowed us to systematically review the completeness of our tests with regards to both requirements and
actual implementation; often, implementation would create additional need for tests which we could not discern
from the requirements alone. For example, requirements was unspecific in detailing acquirable abilities, while
after implementation we knew exactly what to expect from each ability and so could devise comprehensive tests.

Testing Report

Code/Methods Test [Description/Procedure Result Action Taken
and classes Number

being tested

Enemy_AttackT 1.0/1.1 This is testing how an Passed N/A
ype enemy damages a

player depending on

what attackType they

have.
Enemy_Moveme | 1.0/1.1/ This is to test the Passed N/A

ntType 1.2 movement for the




different types of
enemies. Some don't
move at all, some move
randomly and some
follow the player.

Enemy_ShotTyp | 1.0/1.1/ This is to test the Passed N/A
e 1.2 enemies different

shotType
Player 1.0/1.1 This is to test that the Pass N/A
_PlayerShotType player projectiles are

working as they should.

This tests that the Rate of
Fire pickup works and

that changing
Attackinterval behaves as
PlayerCharacter 1.0 expected. Pass N/A
_ AttackInterval
Obstacle_Dama | 1.0/1.1 Tests that when the Passed N/A
ge player walks into a

dangerous object, the
correct amount of

health is taken from the
player, and that enemies
are undamaged

By pressing “P” the game
is paused and once

pressed again, the game
Quit_Game 0.1 becomes unpaused. Pass N/A

Link to Testing Material:
http://teal-duck.github.io/teal-duck/Assessment%203%20files/TestingMaterial.pdf

Bibliography

[1] Vegas, S., "Identifying the relevant information for software testing technique selection,"
in Empirical Software Engineering, 2004. ISESE '04. Proceedings. 2004 International Symposium
on,vol., no., pp.39-48, 19-20 Aug. 2004


http://teal-duck.github.io/teal-duck/Assessment%203%20files/TestingMaterial.pdf

