Risk Assessment and Mitigation

[Changes in blue]

It was found that generally, the risk assessment table was very comprehensive, with clear and detailed
descriptions of both the risks and mitigations. Some changes have been made to the risk assessment table,
to increase the clarity of each risk.

The old “Likelihood/Severity” column has been split into two columns. When reading the document we
found that the single column could cause confusion, for example: #8 had the Likelihood/Severity entry
“high”, which could imply that it was very likely to happen. This is clearly not the case, so changes needed
to be made.

Some changes have been made in the “Description of Risk” column. For most risks, the description was
very clear, though in some cases changes had to be made. In these cases either the description had
skipped over some details, or the description was ambiguous. No changes were made to the “Mitigation”
column. Each mitigation was appropriate and detailed, giving us confidence in the stability of the project as
a whole.

At the bottom of the table, change risks have been added. These were added to prepare for any issues that
may occur due to the handover process at the beginning of this assessment.

Description of Risk

Using a complex programming
language to develop the product
might be harder for some
members of the project team to
work with, which may mean
unnecessary extra time spent on
work.

Implementation of the
specification may be difficult with
the programming language

chosen. This will mean time will
have to be spent finding and
adjusting to a different language.

Likelihood

If the hardware and software are
prone to bugs and are “slow”,
they may be inappropriate for
developing a system. This can
affect development, especially
during the coding and testing
stages.

If the architecture is too complex
to be implemented, the
architecture design will have to
be simplified or modified. This
will mean time wasted on
re-designing.

If the skill level of the team
members are not sufficient
enough for the development of
the project, this could mean
either a product that is not of the
quality expected by the client, or
a product that won't be met by
the deadline due to said
members learning the required
skills whilst developing the
product.

Unless planned, a missing team
member (potentially multiple)
from the project will have an

Severity

Mitigation

In order to prevent this from happening,
the group should mutually agree to use
a language that all members are
comfortable with using. The more
experienced members of the team
should help the less experienced with
understanding the basics of the
programming language.

In order to avoid this happening, the
language chosen should be able to
implement all of the points in the
specification.

In order to reduce the time wasted on
finding bugs, the code should be kept
as simple and clean as possible, (i.e
easy to understand, change and test)
with good documentation of code. We
should use existing libraries where
possible as well as keep the code
modularised. The hardware used
should at least be fast enough to
develop the game in.

In order to prevent this from happening,
the architecture should be designed so
that it follows the standard format, so
that all team members are familiar with
it.

In order to prevent this from happening,
the development team will be required
to learn the languages and techniques
necessary to develop the game. If any
members of the team are particularly
experienced with a facet of the
development tools, they should instruct
those who are not as well versed. Also
to avoid the product not being finished,
individual deadlines should be set to
check if each member is keeping up
with their work, if not then other team
members can help.

In order to maximise efficiency, the
missing member should contact the rest
of the team immediately to confirm if

effect on the schedule of the
project because that person is
not available to do the work
assigned to them.

Disagreements between
members may delay project
deadlines as time may be
needed to agree on something.
In the worst case, it may cause
members to leave.

their absence will affect their work. If
so, the missing member’s work should
be delegated among the team.

If a team member leaves
permanently, that will mean their
workload has to be shared
amongst the remaining team
members.

Lack of understanding of the
support software tools used in
the process by team members
will slow down development of
the product, which will affect
deadlines.

In order to avoid any delays, if there is
a disagreement, it should be brought to
the attention of all team members and a
decision should be made
democratically.

Any important updates for the
support tools used whilst in
development may mean
members have to adjust to new
interface arrangements or other
significant changes in the
software.

In order to finish the work within the
deadline, the work should be delegated.
An individual member should not be
heavily relied upon.

In order to minimise the amount of
wasted time, experienced team
members should help the less
experienced members understand the
tools. Less experienced team members
should also seek online tutorials or
documentation for tools if needed. Also
the more experienced members should
work with the others to make sure they
understand how to use the tools.

If any of the support tools fail to
function in any way, or do not
work as well as anticipated, this
will slow down development as a
fix will have to be found or a new
tool will have to be used.

Changing of requirements may
mean the team has to be ready
to modify the project to suit the
new changes otherwise the
wrong product will be delivered.

Due to SEPR being such a small
project, unless updates are absolutely
necessary, all tools should be kept on
the same version until the project is
finished. If an update is mandatory,
team members will have to help each
other adjust to any major changes in
the software, or seek online help.

Requirements that are
incomplete, ambiguous or
untestable will lead to the wrong
product or something the client
was not expecting.

If the performance of a particular tool
has come to the attention of most of the
team, a replacement tool will have to be
found as soon as possible.

All team members should be prepared
and be made aware that changes in
requirements are expected. If a
requirement changes, the team should
discuss what changes to the system
must be made accordingly.

If a requirement has come to the
attention of most of the team due to
being ambiguous and unclear, the client
should be consulted to either remove it
or change it to be more precise.

Inaccurate or insufficient
planning of the tools required to
complete the project could lead
to an incomplete product or poor
quality outcome, because of
wrong estimations in resources.

All the necessary tools and required
software should be identified early on in
the development process. If any
additional tools are needed, the team
should be notified and an agreement
should be made about whether it is
needed.

Inaccurate or insufficient
planning of the project schedule
will lead to missing deadlines
because of wrong estimations in
time.

Development of the project
without an appropriate, defined
process, could lead to
inconsistency in approach,
producing a more fragile
product.

Sufficient time should be given for each
piece of work when planning and
milestones. Deadlines should not be
underestimated and team members
should agree with the time allocated for
each piece of work.

A suitable, appropriate development
process should be mutually agreed
upon by all team members.

Team members may not follow
the desired process, either
because they prefer not to or
they don’t know how to. This can
mean it will be harder to
coordinate which members are
doing what in the team.

Without proper investigation, the
chosen codebase could have
issues that prevent the game
from running.

Team members should follow the
agreed process and try to do the work
assigned to them. If team members do
not know the principles of the process,
they should ask more experienced
team members or seek information
online.

The team could download the potential
team’s source code and run it before
choosing the codebase to work with.

The code could have
unforeseen issues that make it
difficult to extend the game
without major refactoring of the
code.

If the other team offers technical
assistance, make full use of it early in
development to understand what
measures they took to allow
extensibility.

The code style of the previous
team is different to ours.

Read through the code initially and
understand the pattern and code style
decisions they make before making

changes.

